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Abstract 
This  paper  discusses  a  proof-of-concept  prototype  for ground-based automatic  generation  of 

validated  rover  command  sequences from high-level science and engineering  activities.  This 
prototype  is  based  on  ASPEN,  the Automated Scheduling  and Planning Environment.  This  Artificial 
Intelligence  (AI)  based  planning  and  scheduling system will autornatically  generate  a  command 
sequence  that  will  execute  within  resource  constraints and satisfy  flight  rules.  Commanding the rover 
to  achieve  mission goals  requires  significant  knowledge  of  the rover design,  access to  the low-level 
rover  command  set,  and  an  understanding  of  the  performance  metrics  rating  the  desirability  of 
alternative  sequences.  It  also  requires  coordination with external  events such as  orbiter  passes  and 
dayhight cycles. An automated  planning and scheduling  system  encodes  this  knowledge  and uses 
search  and  reasoning  techniques  to  automatically  generate low-level command  sequences  while 
respecting  rover  operability  constraints,  science and engineering  preferences,  and  also  adhering to 
hard  temporal  constraints.  Enabling  goal-driven  commanding of planetary rovers  by  engineering  and 
science  personnel  greatly  reduces  the  requirements  for highly skilled rover  engineering  personnel  and 
Rover  Science  Team  time.  This in turn greatly  reduces mission operations  costs.  In  addition, goal- 
driven  commanding  permits a faster  response  to  changes i n  rover  state  (e.g.,  faults)  or  science 
discoveries  by  removing  the  time  consuming manual sequence  validation  process,  allowing  rapid 
"what-if" analyses,  and  thus  reducing  overall  cycle  times. 

Introduction 
Unlike  more  traditional  deep  space  missions,  surface  roving  missions  must  be  operated in a 

reactive  mode,  with  mission  planners  waiting  for an end of day  telemetry  downlink--including  critical 
image  data--in  order to plan  the  next  day's worth of  activities.  Communication  time  delays  over 
interplanetary  distances  preclude  simple  'joysticking'  of  the  rover.  A  consequence  of  this  approach  to 
operations  is  that  the  full  cycle  of  telemetry  receipt,  science and engineering  analysis,  science  plan 
generation,  command  sequence  generation and validation,  and uplink of  the  sequence,  must  typically 
be performed in twelve  hours  or  less.  Yet  current  rover  sequence generation is manual  (Mishkin,  et 
al., 1998), with  limited  ability  to  automatically  generate valid rover activity  sequences  from  more 
general activitiedgoals input  by  science and engineering team members. Tools such as  the  Rover 
Control  Workstation (RCW) and  the  Web Interface for  Telescience (WITS) provide mechanisms  for 
human  operators  to  manually  generate plans and command  sequences.  (Backes, et.  al, 1998) These 
tools  even  estimate  some  types  of  resource usage and identify certain flight  rule  violations.  However, 
they  do  not provide  any  means  to  modify  the plan i n  response  to  the  constraints imposed by available 
resources  or  flight  rules,  except by continued manual editing of sequences.  This  current  situation  has 
two drawbacks.  First,  the  operator-intensive  construction and validation  of  sequences  puts  a 
tremendous  workload  on  the  rover  engineering  team.  The manual process is error-prone,  and can lead 
to operator  fatigue  over  the  many  months  of mission operations.  Second,  the  hours  that  must  be 
reserved  for  sequence  generation  and validation reduces  the  time  available to  the  science  team  to 
identify  science  targets  and  formulate  a plan for  submission  to  the  engineering  team.  This  results i n  
reduced  science  return. An automated  planning tool would allow  the  science team and  sequence  team 
to work  together  to  optimize  the  plan.  Many  different plan options could be  explored. The faster 
turnaround of automated  planning  also  permits  shorter than once  a day planning  cycles. 
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The  Rover  Control Workstation (RCW) tool, used to  operate  the  Sojourner  rover  during  the 
Pathfinder  mission,  provides  visualization  for  vehicle  traverse  (movement)  planning,  a  command 
interface,  constraint  checking  for individual commands, and some  resource  estimation  (for  sequence 
execution  time  and  telemetry  volume). However, this tool was never intended for  automated  goal- 
based  planning of rover  activities. To deal with these issues, there is a need for  a  new tool that is 
specifically  geared  toward  automated  planning. 

We are  using AI planning/scheduling  technology  to  automatically  generate valid rover  command 
sequences  from  activity  sequences  specified by the mission science and engineering  team.  This 
system  will  automatically  generate  a command sequence  that will execute  within  resource  constraints 
and  satisfy  flight  rules.  Commanding  the rover to  achieve mission goals  requires  significant 
knowledge of  the rover  design,  access  to  the low-level rover conmand set,  and an understanding  of 
the  performance  metrics  rating  the  desirability of alternative  sequences. It also  requires  coordination 
with  external  events such as  orbiter passes and day/night  cycles. An automated  planning and 
scheduling  system  encodes  this  knowledge and uses search and reasoning techniques  to  automatically 
generate  low-level  command  sequences while respecting rover operability  constraints,  science and 
engineering  preferences, and also  adhering to hard temporal constraints.  A  ground-based  interactive 
planner  combines  the  power of automated reasoning and conflict resolution techniques with the 
insights of  the Science Team or Principal Investigator (PI)  to prioritize and re-prioritize  mission  goals. 

ASPEN Planning System 
Planning  and  scheduling  technology  offers  considerable promise i n  automating  rover  operations. 

Planning  and  scheduling  rover  operations involves generating  a  sequence  of low-level commands 
from  a  set  of  high-level  science and engineering  goals. 

ASPEN  (Chien, et al., 2000; Fukanaga, et al., 1997; Rabideau, et al., 1999) is  an object-oriented 
planning  and  scheduling  system  that provides a reusable set  of  software  components that can be 
tailored to  specific domains.  These  components  include: 

+ An expressive  constraint  modeling  language to allow the user to  define  naturally  the 

+ A constraint  management system for representing and maintaining  spacecraft  and  rover 

+ A set of search  strategies  for plan generation and repair to satisfy hard constraints 
+ A language  for  representing plan preferences and optimizing  these  preferences 
+ A soft, real-time  replanning  capability 
+ A temporal  reasoning system for  expressing and maintaining  temporal  constraints 
+ A graphical  interface  for  visualizing  plans/schedules  (for use i n  mixed-initiative system in 

application  domain 

operability and resource  constraints,  as well as  activity  requirements 

which the problem  solving  process is interactive). 

In ASPEN, the  main  algorithm  for  automated planning and scheduling is based on a  technique 
called iterative repair (Zweben  et  al.,  1994). During iterative repair, the  conflicts i n  the  schedule  are 
detected  and  addressed  one  at  a  time until conflicts no longer exist, or a user-defined time  limit  has 
been exceeded. A conflict is a violation of  a  resource  limitation,  parameter  dependency  or  temporal 
constraint.  Conflicts can be repaired by means  of several predefined methods.  The  repair  methods  are: 
moving  an  activity,  adding  a  new  instance  of an activity,  deleting an activity,  detailing an activity, 
abstracting an activity,  making  a resource reservation of an activity,  canceling a reservation, 
connecting a temporal  constraint,  disconnecting  a  constraint, and changing  a  parameter  value.  The 
repair  algorithm  may use any  of  these  methods i n  an attempt  to  resolve  a  conflict.  How  the  algorithm 
performs is largely  dependent on the  type  of  conflict being resolved. 

Rover  knowledge is encoded i n  ASPEN under seven core model classes:  activities,  parameters, 
parameter  dependencies,  temporal  constraints,  reservations, resources and state  variables. An activity 
is an  occurrence  over  a  time interval that i n  some way affects  the  rover. It can represent  anything  from 
a  high-level  goal  or  request  to  a low-level event or command.  Activities  are  the  central  structures in 
ASPEN, and  also  the  most  complicated.  Together,  these  constructs can be used to  define  rover 
procedures,  rules and constraints i n  order  to  allow manual or  automatic  generation  of  valid  sequences 
of activities,  also  called  plans  or  schedules. 
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Once  the  types of  activities  are  defined,  specific instances can  be created from the types.  Multiple 
activity  instances  created from the  same  type might have different  parameter  values,  including the 
start  time.  Many  camera-imaging  activities,  for  example, can be created from the  same  type  but with 
different  image  targets  and  at  different  start  times.  The  sequence  of  activity  instances is what  defines 
the plan. 

The  flight  rules  and  constraints  are defined within the  activities.  The  flight rules can be defined as 
temporal  constraints,  resource  constraints,  or system state constraints.  Temporal  constraints  are 
defined  between  activities. An example would be that  the rate sensor  must warm up for  two  to  three 
minutes  before  a  rover  traverse. In ASPEN,  this would be modeled within the  "move  rover"  activity 
as  shown in Figure 1. The rate-sensor-heat-up  is another  activity  that is presumed  to  turn 011 a  rate 
sensor  heater. 

Constraints  can  also  be  state  or  resource  related.  State  constraints can either  require  a  particular 
state  or  change  to  a  particular  state. Resource constraints can use a  particular  amount of a  resource. 
Resources with a  capacity  of  one  are called atomic  resources. ASPEN also uses non-depletable and 
depletable  resources.  Non-depletable  resources  are resources that can  used by  more than one activity 
at a  time  and  do  not  need  to be replenished. Each activity can use a  different  quantity of the  resource. 
An  example  would be the  rover  solar  array power. Depletable resources are  similar to non-depletable 
except  that  their  capacity is diminished  after use. I n  some  cases  their  capacity can be replenished 
(memory  capacity)  and in other  cases it cannot  (battery  energy,  i.e.  non-rechargeable  primary 
batteries).  Resource and state  constraints  are defined within activities using the keyword 
"reservations."  See  Figure 1 for an example. 

Activity move-rover { 
constraints = 

reservations = 
starts  after end-of  rate-sensorpheatpup by [2m,31n]; 

solar-array-power  use 35, 
rate-sensor-state changeto "on", 
target-state rnustbe "ready"; 

1; 

Figure 1 - ASPEN  Modeling  Language  Example 

The  job  of a planner/scheduler,  whether manual or  automated, is to  accept  high-level  goals  and 
generate a set  of low-level activities  that  satisfy  the  goals and do not violate  any  of  the  rover  flight 
rules or constraints.  ASPEN  provides  a  Graphical User Interface (GUT) for  manual  generation  and/or 
manipulation of activity  sequences. Figure 2 contains  a screen dump of the GUT. 

Figure 2 - ASPEN GUI 
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Mars  Surveyor  Lander 
The  Mars  Surveyor 2001 Lander  was scheduled for launch i n  April 2001. Due to  a  reorganization 

of  the  Mars Exploration  Program at JPL,  this launch was cancelled.  The mission design  for  the  next 
launch  opportunity, in 2003, is currently being reviewed.  One option under consideration is to launch 
a modified  version of  the  2001  Lander with a payload complement  including  the  Marie  Curie  rover. 
For  the  purposes  of  this  paper,  we  are  assuming  the 2001 Lander configuration with a  2003  arrival 
date.  If  the  lander  design  changes,  we will update our planner models accordingly. 

The lander  will  carry  an  imager  to  take pictures of the  surrounding terrain during  its  rocket-assisted 
descent to  the surface.  The  descent-imaging  camera will provide images  of  the  landing  site  for 
geologic  analyses,  and will aid  planning  for initial operations and traverses  by  the  rover. The lander 
will  also  be a platform  for  instruments and technology  experiments designed to  provide  key  insights to 
decisions  regarding  successful and cost-effective hLtman missions to Mars.  Hardware on the lander 
will be used  for an in-situ demonstration  test  of rocket propellant  production  using  gases in the 
Martian  atmosphere.  Other  equipment will characterize  the Martian soil properties  and  surface 
radiation  environment.  Figure 3 contains  a diagram of  the lander and instruments.  The  Marie  Curie 
rover  will be deployed  using  a  robotic-arm attached to the  lander. 

Figure 3 - Mars 2001 Lander  Figure 4 - Marie  Curie  Rover 

The  Marie  Curie  rover is very  similar  to  the  Mars Pathfinder So.journer rover.  (See  Figure 4.) In 
fact, it is the  same  rover  that  was used in the Pathfinder test bed during  the  mission. (Mishkinet al., 
1998;  Mishkin  1998) Additional modifications have been made to accommodate  the  robotic-arm- 
based  deployment  from  the 2001 Lander. I n  addition,  some minor engineering  enhancements have 
been  added.  A  description  of  the  rover  components is included i n  Table 1 .  

+ 6-Wheeled  robotic  vehicle,  rocker-bogie mobility chassis 
+ Mass:  10.5  kilograms 
+ Deployed  volume: 65cm (1)  by 48cm (w) by 3oC111  (11). 
+ Intel  80C85 CPU (-1 OOKips), 16K PROM, 64K rad  hard RAM, 176K EEPROM, 5 12K RAM 
+ Forward  Black & White  stereo  cameras,  and rear B&W mono camera 

+ GaAs solar panel (1 6W peak) 

+ Primary  (non-rechargeable)  batteries 
+ UHF Radio  Modem 
+ Laser  stripers  for hazard detection 

Table 1 - Rover  Description 
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Model Description 
The  Marie  Curie  planning model was built to a level at which all flight  rules and constraints  could 

be  implemented.  The  resources include the  three  cameras, Alpha Proton X-Ray Spectrometer 
(APXS),  APXS  deploy  motor,  drive  motors,  solar  array, battery, RAM usage, and  EEPROM 
usage. 

There  are 27 different  state  variables used to  track  the  status  of  various  devices,  modes,  and 
parameters.  Some of these  parameters  map  directly  onto rover internal parameters and others  are 
related to  the ASPEN  specific  model. We are not modeling all rover internal parameters  because 
many  are  not useful  for  automating  planning. We have defined 162 activities of which 63 decompose 
directly  into low-level rover  commands. 

There  are  several  constraints  that  affect  overall  operations  of  the Marie Curie  rover.  These 
include: 

4 Earth-Mars  one-way  communications  time  delay  (5-20  minutes) 
4 Limited  communications bandwidth (generally < 10 Mbits downlink per sol1 available to 

4 Limited  communications  opportunities (1 command upl ink,  2  telemetry  downlinks per sol) 

The  power  system is the  single  most important resource for the Marie Curie  Rover.  This  system 
consists  of a .22 square  meter  solar  array and 9 LiSOCL batteries.  The  batteries on Marie  Curie  are 
primarily used during  the  night  for  APXS  data  collection.  They  are  primary  batteries  and  therefore 
modeled  as  non-renewable  depletable  resources.  The solar array is the  primary power source used 
during  the  day.  The predicted available solar power profile throughout  the  Mars  day  must be input 
before  planning  begins.  Using  a  daily model is required due to changing  solar  array  power  available 
as a result of degradation  from  dust  accumulation and seasonal solar irradiation variability.  The  angle 
of  the  solar  array,  which  depends on the  terrain, will also  affect  the  availability of  solar  energy.  Solar 
array  angle  estimates  could be generated by RCW for input into ASPEN. 

rover) 

A typical Mars  day might  involve  a  subset  of  the  following  activities: 

Complete  an  APXS  data  collection  that  was carried out  during  the  prior  night 
Capture a rear  image  of  the  APXS  site 
Traverse  to an appropriate  site and perform a series  of soil mechanics  experiments,  including 
several  subframe  images of soil mounds and depressions created by running  individual  wheel 
motors 
Traverse  to a  designated rock or soil location 
Place  the  APXS  sensor head 
Capture  end-of-day  operations images with its forward cameras 
Begin  APXS  data  collection 
Shut  down  for  the  night 

APXS  data  collection usually occurs  overnight while the rover is shutdown. Each of  these 
activities  can be input into ASPEN as a goal for  that Mars day planning horizon. The  format  of  the 
input  goals is RML  or  Rover  Modeling  Language. RML  is  an application  of  Extensible  Markup 
Language  (XML)  designed  specifically  for rover operations. RCW will use RML for input and 
output.  RML  is  described in detail i n  the  next section of this paper. 

The  exact position of  the  rover  after a traverse  activity is subject  to dead reckoning  error.  The 
timing  of  traverse  activities is also  non-determinant. Because of  the inherent problems of coordinating 
activities  between  the  event-based  rover and time-based lander, wait commands  are used to 
synchronize  activities. When the lander is imaging the rover after  a  traverse, a wait  command is used 
to  ensure  the rover will remain stationary  at its destination until the lander completes  imaging. 
Because  the  rover  executes  commands  serially,  this  ensures  that  another  command will not  start 
execution  before  the  previous  command has completed. All rover traverse  goals  are  generated  using 

1 A Sol is a Martian day, equivalent to about 24 hours and 39 minutes 
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the  RCW. (ASPEN is not  designed  to perform rover motion planning.) The  RCW  operator can fly  a 
3-D rover icon through  the  stereoscopic  display  of the Martian terrain. By inspecting  the  stereo  scene, 
as well as placing the rover icon in various  positions within the scene,  the  operator can assess  the 
trafficability of  the  terrain.  By  placing  the icon i n  the  appropriate position and orientation  directly  over 
the  stereo  image  of  the actual rover on the  surface,  the rover's location and heading  are  automatically 
computed.  This  position information is output  to ASPEN to set  the rover end position state.  The 
rover  driver  specifies  the rover's destinations by designating  a  series  of  waypoints i n  the  scene, 
generating  waypoint  traverse  commands. 

Rover  data  storage is a  scarce  resource  that must be tracked within the ASPEN model.  The  largest 
consumer  of  data  storage is the  camera image activity.  This  activity can fill the  on-board  data  storage 
if a telemetry  session with the  lander is  not available  during  the  data  collection.  ASPEN will keep 
track  of the  data  storage  resource  to  ensure  that all data is downlinked before  the buffer is completely 
full. 

Planning Tool Interfacing: Rover Markup Language (RML) 
There  are  several  different  tools  that can be  used for  developing rover sequences. In addition to 

ASPEN and  RCW,  other  tools can be  used for  environmental  predictions,  distributed  science 
planning,  instrument  analysis,  and  engineering  performance  analysis. Each of  these  tools is created  by 
a  different  set  of  engineers  or  scientists  that  are  cognizant i n  that  particular  piece of  the rover 
operation.  In  order to simplify  the interface between these rover tools, we decided  early on to  use  a 
common  interface  language. We needed to  capture all information about rover command  generation 
and  uplink,  preferably in exactly  one  file per uplink. This  information  includes  the  following: 

+ The science  requests  that  the uplink is designed  to  satisfy, and the  originator  of  each  request 
+ The  rover  commands  to be uplinked, with each command cross-referenced  to the request  or 

+ The operators who worked on the uplink 
+ The downlink  telemetry related to  the upl ink 
+ References  to auxiliary  files, such as terrain databases,  that were used i n  preparing  the uplink 

requests it helps to implement 

In addition, we must  generate uplink and downlink reports, preferably i n  HTML, so that  we can 
post  them on web  sites  accessible to the  operations  teams.  The Pathfinder team created  these  reports 
manually,  requiring  several hours of  tedious work for  every uplink; we wanted to capture all the 
information  needed  for  these  reports i n  the  file, so that  future missions could generate the reports 
automatically. 

We  chose  to base  our  data  language on XML  for several reasons. First, XML is  an emerging  data 
representation  standard with widespread  support from both proprietary-software and free-software 
organizations.  Because  XML is free and open-source,  there is a wide community  of  users  supporting 
development  of  tools  and utilities that make XML easier  to use. Included i n  this  set of  tools  are 
numerous  free,  high-quality  parsers usable from several programming  languages.  We  didn't  have  to 
design  a  data  language from scratch (and  document it) and then write, test,  document,  and  maintain  a 
parser  for it. All that  was  necessary  was  to download a  free parser, plug it in, and run it. Because  all 
of  the  XML parsers  expose a standardized API, we can switch parsers with a  minimum of effort  and 
no  changes  to  data  files if  a  better implementation comes  along. 

Because  XML  parsers  are  available  for several languages, we can use the right language  for each 
job. We can write  larger  applications i n  languages such as C++ or  Java, and smaller  applications  (e.g., 
the  HTML report  generators) i n  languages such as Perl, Python, or Tcl. All of  these  languages  can 
parse  our  XML data  equally  well, with no extra  effort on our part. 

XML  files  tend  to be naturally  modular. As we  discover  the need to  capture an additional  datum, 
it's  usually  trivial to add  a section for it into our evolving  specification.  Also, because the external 
representation  for XML is based on ASCII, standard Unix shell tools and text  editors  work with it. 
We can  search  for  the  existence  of particular tags,  for instance, or quickly  develop  a  test-input file 
using  any  standard  text  editor. 
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We  still  have to  do  some work to design and document our subset of XML.  We  also  have  to 
perform  some  data  verification. For example, you can’t tell XML parsers to insist that  a  field’s  value 
be  a  sequence  of  digits,  for  instance, so we  have  to write our own code  for  that. Still, XML  gives us a 
great  base  to start  from  and  a  great  choice  of  existing  tools,  saving us a lot of  time,  money,  and  labor. 

<Commands> 
<CMD-waypoint-> 

<ARG-waypoint-X> I O  15</ARG-waypoint X> 
<ARG waypoint_Y>  1433</ARG_waypoint__Y> 
<ARG-waypoint-time>l</ARG waypoint-time> 
<Satisfis>photo</Satisfies> 

- 

</CMD-waypoint-> 
<CMD-turnheading-> 

<ARG turnheading->9830</ARG turnheading-> 
<Satisfies>photo</Satisfies> 

- 

</CMD turnheading-> 
<CMD -wait-greater> 

<ARG-wait_greater_sensor>SEN_ISOLAR</ARG_wait_greater__sensor> 
<ARG wait greater-value>42</ARG-wait-greater-vaIue> 
<ARG-wait-greater-limit> 15</ARG-wait-greater-Iimit> 
<Satisfies>phzo</Satisfies> 
<Comment>Wait up to 15 minutes  for  decent  lightillg</Comment> 

</CMD-wait-greater> 
<CMD image-> 

<ARG irnage-shift>shiftO</ARG~i~~~age~shift> 
<ARG-image camid>left</ARG image camid> 
< A R G - i m a g e t i m e > l  l</ARG G a g e  time> 
<ARG-image compression>btc</ARG-image compression> 
<ARG-image-apid>O</ARG_image-apid> 
<ARG-image srow>l </ARG-image srow> 
<ARG-image  scoI>O</ARG-image-scol> 
<ARG-image-erow>256</ARG-image-erow> 
<ARG-image-ecol>256</ARG-image ecol> 
<Satisfies>photo</Satisfies> 

</CMD-image-> 
</Commands> 

Figure 5 - Rover  Markup  Language  Example 

Figure 5 contains an example  of  RML.  This  example  consists  of  commands  to  take  a  picture with 
the left front  rover  camera. Included are  commands to turn to  the photo target,  wait  for  proper 
lighting,  and  take  the  picture with the proper camera  parameters.  These  commands  are  part  of  a 
“photo” request  defined i n  RML. Information about  the requestor is also encoded i n  RML  but  not 
shown in this  example. 

Status 
Initial  work in 1998 consisted of  a  preliminary proof of concept  demonstration i n  which we used 

automated  planning  and  scheduling  technology integrated with WITS to  demonstrate  automated 
commanding  for  the  Rocky-7  rover from the WITS interface.  (Backes, et al., 1999) In 2000, we  are 
providing an in-depth  validation  of  the  automated  command-generation  concept.  The  ASPEN 
planning  and  scheduling system will be integrated with a rover activity  interface and the  Rover 
Control  Workstation. ASPEN will receive RML formatted high-level requests from the  activity 
interface.  ASPEN will then automatically  generate validated rover-command sequences  that  satisfy 
these  requests and provide  those  RML  formatted  sequences to the Rover Control  Workstation.  The 
ASPEN  Java-based  interface will enable  the user to  access planned activities  and  to  observe  resource 
and  state  constraints.  As  the ASPEN interface is Java-based, users will be able to access  this 
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commanding  capability from anywhere on the  Internet.  The  computation  intensive  aspects  of  the 
commanding  capability  (such  as  the  planner/scheduler, path planner, uncertainty  estimation  software, 
vision  and  image  processing  software,  etc.) will reside on one or more rover workstations based in a 
central  location. 

I Move Goals I 
I 

commands I + 

I power, data /" k 
Rover Model: activities, 

thermal, solar  resources, constraints Iterative process, 
R M L  interface 

Figure 6 - End-to-End Automated  Commanding  System 

The  end-to-end  data  flow  for  this system is shown i n  Figure 6. The interaction between  ASPEN 
and  RCW is an iterative  process. Both ASPEN and RCW will receive high-level goals.  The  RCW 
input  goals  will be related  to  rover  motion. RCW will output  traverse  commands  for  input into 
ASPEN.  ASPEN  will  merge  these with other  science and engineering  goals  to  produce  an 
intermediate level plan.  The plan will be output to RCW to update motion commands  as  necessary. 
This  process will continue until an acceptable plan is generated. Finally a  time  ordered list of 
commands  would be output  for  sequence  generation. 

The  Marie  Curie ASPEN model is nearly complete and ready for  testing. Initial testing on a 
sample of 136 activities produced a  conflict  free plan i n  about 9 seconds.  This  testing  was  completed 
on a Sun Ultra-2  workstation.  These  relatively  quick plan cycles will allow  the  Marie  Curie  Rover 
operations  team  to  perform  "what-if'  analysis on different  daily plans. Our goal is that  this  quick 
planning  capability  will be used to  generate  commands more frequently than once-per-day, if 
communications  opportunities  permit. 

I 

Figure 7 - Possible  Rover Uplink Dataflow 

Our  next  level  of  testing will involve  generating plans for  two typical Sojourner  rover  days  on 
Mars.  These  plans  will be compared with the  manually generated sequences  that  were run during  the 
Sojourner  mission. As a  result  of  these  tests, minor updates to  the model may be required.  Once the 
model is validated, we will  integrate ASPEN with RCW. Figure 7 shows  a  possible  Marie  Curie  rover 
uplink  operational  data  flow.  The highlighted boxes  show  the planner that would be used at both the 

8 



science  planning  and  engineering planning level. The planner model would contain  sufficient 
engineering  information  to  ensure  that  the  vast majority of science  requests  finally  approved  are 
feasible  from an engineering  standpoint. Eventually we would like to add performance  metrics  to  the 
planner  model  to  optimize  the generated plans. This will enable  automated  "what-if"  analysis  to 
generate  plans  that  maximize  science and engineering  value. 

Onboard Rover Planning 
In  addition to the  work with Marie  Curie,  we  are  developing  a  dynamic, onboard planning  system 

for  rover  sequence  generation.  The  CASPER  (Continuous Activity Scheduling,  Planning,  Execution 
and  Re-planning)  system (Chien et  al.,  1999; Chien et al., 2000), is a dynamic  extension to ASPEN, 
which  can  not  only  generate  rover command sequences but can also  dynamically  modify  those 
sequences in response  to  changing  operating  context. If orbital or descent imagery is available, 
CASPER  interacts with a path planner to estimate  traversal lengths and to  determine  intermediate 
waypoints  that  are  needed  to  navigate around known obstacles. 

Once  a  plan  has been generated it  is continuously updated during plan execution  to  correlate  with 
sensor  and  other  feedback from the  environment. I n  this  way,  the planner is highly  responsive to 
unexpected  changes,  such  as  a  fortuitous  event or equipment  failure, and  can quickly  modify  the  plan 
as  needed.  For  example, if the  rover wheel slippage has caused the position estimate  uncertainty to 
grow  too  large,  the  planner can immediately command the  rover  to  stop  and perform localization 
earlier  than  originally  scheduled.  Or, if a particular traversal has used more battery power  than 
expected, the planner  may need to discard one  of  the  remaining  science  goals.  CASPER  has been 
integrated with control  software from the JPL Rocky 7 rover  (Volpe  et  al., 2000) and is currently 
being  tested on Rocky 7 in the JPL Mars  Yard. 

Conclusions 
Current  approaches  to  rover-sequence generation and validation are  largely  manual,  resulting i n  an 

expensive,  labor  and  knowledge  intensive  process.  This is  an inefficient use of  scarce  science-PI  and 
key  engineering  staff  resources. Automation as targeted by this system would automatically  generate 
a  constraint  and  flight  rule checked time ordered list of  commands and provides  resource  analysis 
options to  enable users to perform more  informative and fast  trade-off  analyses. Initial tests  have 
shown  planning  times on the  order  of  seconds rather than hours. Additionally,  this  technology  would 
coordinate  sequence  development between science and engineering  teams and would thus  help  speed 
up  the  consensus  process. 

Enabling  goal-driven  commanding of planetary rovers by engineering and science  personnel 
greatly  reduces  the  workforce  requirements  for highly skilled rover engineering  personnel.  The 
reduction in team  size in turn  reduces mission operations  costs. I n  addition,  goal-driven  commanding 
permits  a  faster  response to changes i n  rover state (e.g., faults) or science  discoveries by removing  the 
time  consuming  manual  sequence  validation process, allowing "what-if' analyses,  and  thus  reducing 
overall  cycle  times. 
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